

The Future of Measuring the Light Vector Mesons with the PHENIX Detector

Richard Seto

University of CA, Riverside

For the **PHENIX Collaboration**

DNP Hawaii Oct 17-20, 2001 P ioneering

<mark>H</mark> igh

E nergy

N uclear

Interaction

e <mark>X</mark> periment

.

Where does mass (hadronic) come from?

T>T_c

- Space filled with a condensate $\phi = \psi \psi$
 - Similar to the higgs field for E-W theory
 - ψψ goo of quarks and gluons
 - Couples to quarks and gluons
 - Spontaneous symmetry breaking (I.e. chiral) of the quark condensate at low Temperature generates hadron masses

- As $T \rightarrow T_C$, mass $\rightarrow 0$
- How do we heat up the vacuum?
- RHI collision leaves a region of excited qq, g
 ie hot vacuum

Richard Seto

How do you see this? Vector Meson mass shifts in the dilepton channel

"Light" Vector mesons are ideal probes (r,w,f)

- Short lifetime ~ few fm/c
 - Decay inside the medium
- Electrons (and muons) are ideal messengers
 - Don't interact strongly (e.g. neutrinos from the sun)
- → Like putting a scale to measure mass inside the fireball
- rwf show a broadening at high T -
 - R. Rapp (PRC(63) 2001 954907)

Experimental "Knobs"

Signal should increase with centrality

Signal should be enhanced at low p_T Central-"High" PT Central-"Low" P_T

Calculations:comments

- Various approaches
 - Assumptions of
 - Brown-Rho scaling: assumption that hadron masses scale as the quark condensate - essentially from a quark degrees of freedom point of view
 - Rapp-Wambach: Rescattering and cross sections from a hadronic degrees of freedom point of view
 - This always puzzled me.
- Duality?: hadronic quark degrees of freedom
 - r (Vector) and A₁(Axial-Vector) become degenerate in hadronic model – I.e. chiral symmetry is restored.
- To actually prove this is not possible at the moment.
- Theorists will depend on experiment to help define the right "degrees of freedom" to use

What measurements are possible?

- Problem background from dalitz decays and conversions
 - What can we do now?
 - Future : Dalitz rejection via electron ID in a field free region.
 - Critically important to see vacuum values to prove mass resolution is good – I.e. you want to see a "peak"
- New Calculations by Rapp (PRC(63) 2001 954907)
 - Specific to RHIC
 - Uses hadronic degrees of freedom
 - → Modification of hadronic resonances (chiral restoration)
 - Strong enhancement of the r (mixed and hadron gas phase)
 - p have a very short mean free path in the hadronic gas
 - r has a very short lifetime (<1 fm)

Time evolution

- Rapp's model has
 - Spectral functions (this is where the interesting stuff is)
 - Many of the medium effects of interest come from interactions with Baryons

At RHIC these baryons are mostly from thermal excitations of

baryon-antibaryon pairs

Time evolution

- Rapp provides us with
 - Mass and pt distribution from inside medium

The Exodus generator

- R. Averback has put together a dilepton generator for phenix.
 - Includes
 - sources of dileptons VM(r,w,f,J/y,U), h, h', Charm(singles), dalitz decays, (conversions assumed as scaled dalitz)
 - Acceptance
 - Momentum resolutions effects
 - "Standard" Exodus produces vacuum decays, Rapp spectra govern "in medium" decays.
 - Normalization Checked vs calculation by Rapp.
- PHENIX (Y. Akiba) has made some first measurements of the dielectron background.
- Strategy
 - Incorporate Rapp's model into Exodus
 - Check backgrounds against early PHENIX measurement (rescale)
 - Assume that a mixed event subtraction will work.
 - Assume ~ 10⁹ Central events ~4 months perfect running (1-2 yrs)
 - Ignore Systematics, Triggering problems, Assume efficiency is ~100% (It is now ~24% realistically it may reach 80%)

An example

- Assume ~ 10⁹ Central events
 - 1000 events/secx10⁷ sec x 10%
 - 10⁷ sec is ~4 months perfect running (1-2 yrs)
 - Look at spectra assuming a perfect mixed event subtraction

Pt and centrality dependence of the Exodus+Rapp model

- The signal for "in medium" effects is strongest for central, low pt events
- Peripheral low pt events, show a substantial enhancement of the r from the hadron gas stage

f line shape

- In Rapp's calculation the f line shape does not change much due to the OZI rule.
- Plots are for
 - Central events pt<0.2 GeV-(red) compared to
 - high pt peripheral renormalized (black)
- With statistics of 10⁹ Central and no dalitz rejection it is not possible to see the width broadening
- For fun 10¹⁰ Events or equivalently – good dalitz rejection
 - Start to get some discrimination

 The W is complicated since it sits on the r -nevertheless it should be broadened.

Even if there is no QGP, Rapp predicts a strong enhancement of the r. (which in itself would be interesting to see – remember the r*clock*?)

A problem with this calculation is that correlated charm pairs are not yet in, since the line shape of the r is rather broad. Charm, in many scenarios, is also expected to be enhanced

diff hot cent vipt hdif Nent = 0Mean = 0.7499Low pt central RMS = 0.13234000 High pt peripheral 3000 2000 1000 0.5 0.60.7 8.0 1.1 Charm- low pt central Charm-high pt peripheral

 We should be able to identify this if the enhancement is as strong as predicted.

But is it a "hot qgp" or a cold hadron gas?

Model comparison – with and w/o "in medium effects"

- In the case of a hadron gas, though strongly enhanced the r should have its ordinary width. The r and w will be separable.
- In the case of "in medium" effects both the r and w will be strongly broadened.
 Charm

 $M_{\rm ee}$ 10 9 central events pt<0.2 GeV

- This was an exercise to get a feeling for what is possible – and assumed a particular model.
- Assuming Rapp's Calculation
 - If the r is strongly enhanced Phenix should be able to see it. We may be lucky enough to see the first hints of chiral symmetry restoration in the r/w.
 - However, the clear signature of chiral symmetry restoration - the detection of width broadening will need very high statistics and/or dalitz rejection
- More studies will be done
 - Addition of open charm pairs directly into Exodus
 - Better incorporation of conversions
 - Incorporation of more detailed distributions from R.
 Rapp

Input Pt spectra

Pt spectra of "in medium" decays is
 Hot vector mesons from fireball much softer. The cuts
 are

- Pt<0.2 low pt</p>
- Pt > 0.8 "high pt" the signal is down by a factor of 10.

- NOTE the plot is for internal PHENIX consumption. I believe I must remove it since I don't think this plot has been Oked for dissemination
- I need an overall scale of 4 to match the data- probably about ½ of this reflects the fact that I have no conversions- and I attempt to use this scaling to account for this. It probably means that my charm contribution is too strong. The red curve comes from
 - Requiring (e1 in pbsc(year 1) and e2<800) or the reverse</p>
 - An assumed efficiency of .24 for the two electrons (from akiba's note)
 - (50% east, 80% West, pid~60% for the pair)
 - For the calculation, I scale back up to 100%.

Mixed event di-electron invariant mass

Spectra (theory)

r/w region

- The W is complicated since it sits on the r.
- Even if there is no QGP, Rapp predicts a strong enhancement of the \(\Cappa\). (which in itself would be interesting to see – remember the \(\Cappa\)" (clock"?)
 - A problem with this calculation is that correlated charm pairs are not yet in, since the line shape of the r is rather broad
- We should be able to identify this if the enhancement is as strong as predicted.
- But is it a "hot qgp" or a cold hadron gas?

